1 Solve, algebraically, these simultaneous equations.

$$
\begin{aligned}
& 4 x+y=8 \\
& 2 x-3 y=11
\end{aligned}
$$

$\qquad$$y=$[4]

2 Solve these simultaneous equations.

$$
\begin{aligned}
& 3 x-2 y=13 \\
& 7 x+6 y=9
\end{aligned}
$$

$x=$$y=$[3]

3 In a car park the only vehicles are motorbikes and cars.
The motorbikes each have 2 wheels and the cars each have 4 wheels.
There are 110 vehicles and 378 wheels altogether in the car park.
Let the number of cars be c and the number of motorbikes be m.
(a) Use the information in the question to complete this equation.

$c+m=$

(b) Write down another equation in c and m and solve it simultaneously with the equation in part (a) to find the number of motorbikes and the number of cars in the car park.
(b) Number of cars, $c=$

4 Chanre sews edging onto curtains and blinds.
She is paid $£ C$ for each pair of curtains and $£ B$ for each set of blinds.
On Monday she completes 10 pairs of curtains and 2 sets of blinds.
She is paid $£ 35$ for this.
This gives the equation $10 C+2 B=35$.
(a) On Tuesday she completes 5 pairs of curtains and 6 sets of blinds.

She is paid $£ 30$ for this.
Write an equation to show this information.
\qquad
(a)
[1]
(b) Solve the two simultaneous equations algebraically to find the amount she is paid for each pair of curtains and each set of blinds.
(b) Curtains $£$

5 Solve these simultaneous equations.

$$
\begin{aligned}
& 4 y+3 x=3 \\
& 2 y-x=-2
\end{aligned}
$$

$$
x=
$$

$$
y=
$$

6 Solve, algebraically, these simultaneous equations.

$$
\begin{aligned}
& 3 x+2 y=5 \\
& 5 x-3 y=21
\end{aligned}
$$

$x=$ \qquad

$$
y=
$$

7 This shape is made from a regular pentagon and a regular octagon each with sides of the same length.

Not to scale

Prove that angle p is 117°.

8 The Park and Ride is a bus service to take people into the city centre.
Adults pay $£ 1.60$ for a ticket and children pay 20 pence.
On one journey there are 55 passengers and the driver collects $£ 67$.
Let a be the number of adults on the bus and let c be the number of children on the bus.
(a) Show that $8 a+c=335$.
\qquad
\qquad
(b) The fact that there are 55 passengers means that $a+c=55$.

Solve this equation simultaneously with the one from part (a) to find how many children are on the bus.
(b)

9 Solve these simultaneous equations algebraically.

$$
\begin{aligned}
& y=2 x-4 \\
& y=x^{2}-4 x+3
\end{aligned}
$$

Give your answers correct to 2 decimal places.
$x=$ $y=$$x=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . y=$[6]

10 You are given that $f(x)=c x+d$ and that $f(0)=-6$ and $f(2)=10$.
Find the values of c and d.

$$
\begin{aligned}
& c= \\
& d=
\end{aligned}
$$

11 Solve, algebraically, these simultaneous equations.

$$
\begin{aligned}
& x+3 y=14 \\
& 2 x+y=3
\end{aligned}
$$

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

12 Solve algebraically these simultaneous equations.

$$
\begin{aligned}
& y=x^{2}+6 x-5 \\
& y=2 x+7
\end{aligned}
$$

$x=$ $y=$$x=. ~ y=~$[6]

13 Solve these simultaneous equations algebraically.

$$
\begin{aligned}
& y=2 x^{2}-4 x+1 \\
& y=6-x
\end{aligned}
$$

$$
x=
$$

\qquad $y=$ \qquad

$$
x=
$$

\qquad $y=$ \qquad

